Controlled and oriented immobilization of protein by site-specific incorporation of unnatural amino acid.

نویسندگان

  • Moon-Hyeong Seo
  • Jieun Han
  • Zongwen Jin
  • Dong-Won Lee
  • Hee-Sung Park
  • Hak-Sung Kim
چکیده

Immobilization of proteins in a functionally active form and proper orientation is crucial for effective surface-based analysis of proteins. Here we present a general method for controlled and oriented immobilization of protein by site-specific incorporation of unnatural amino acid and click chemistry. The utility and potential of this method was demonstrated by applying it to the analysis of interaction between a pathogenic protein DrrA of Legionella pneumophila and its binding partner Rab1 of human. Kinetic analysis of Rab1 binding onto the DrrA-immobilized surfaces using surface plasmon resonance revealed that immobilization of site-specifically biotinylated DrrA results in about 10-fold higher sensitivity in binding assay than the conventional immobilization of DrrA with random orientation. The present method is expected to find wide applications in the fields of the surface-based studies of protein-protein (or ligand) interactions, drug screening, biochip, and single molecule analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A click chemistry approach to site-specific immobilization of a small laccase enables efficient direct electron transfer in a biocathode.

Controlled orientation of a small laccase on a multi-walled carbon nanotube electrode was achieved via copper-free click chemistry mediated immobilization. Modification of the enzyme was limited to only the tethering site and involved the genetic incorporation of the unnatural amino acid 4-azido-L-phenylalanine (AzF). This approach enabled efficient direct electron transfer.

متن کامل

Site-specific protein immobilization using unnatural amino acids.

Protein immobilization confers the advantages of biological systems to a more chemical setting and has applications in catalysis, sensors, and materials development. While numerous immobilization techniques exist, it is optimal to develop a well-defined and chemically stable methodology to allow for full protein function. This paper describes the utilization of unnatural amino acid technologies...

متن کامل

Designing Peptide and Protein Modified Hydrogels: Selecting the Optimal Conjugation Strategy.

Hydrogels are used in a wide variety of biomedical applications including tissue engineering, biomolecule delivery, cell delivery, and cell culture. These hydrogels are often designed with a specific biological function in mind, requiring the chemical incorporation of bioactive factors to either mimic extracellular matrix or to deliver a payload to diseased tissue. Appropriate synthetic techniq...

متن کامل

Global incorporation of unnatural amino acids in Escherichia coli.

The incorporation of amino acid analogs is becoming increasingly useful. Site-specific incorporation of unnatural amino acids allows the application of chemical biology to protein-specific investigations and applications. However, the global incorporation of unnatural amino acids allows for tests of proteomic and genetic code hypotheses. For example, the adaptation of organisms to unnatural ami...

متن کامل

Method Development for Efficient Incorporation of Unnatural Amino Acids

Method Development for Efficient Incorporation of Unnatural Amino Acids Paul David Harris The synthesis of proteins bearing unnatural amino acids has the potential to enhance and elucidate many processes in biochemistry and molecular biology. There are two primary methods for site specific unnatural amino acid incorporation, both of which use the cell’s native protein translating machinery: in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Analytical chemistry

دوره 83 8  شماره 

صفحات  -

تاریخ انتشار 2011